Neurophysiology and Neuroimaging

MCIN faculty members investigate neurophysiological processes at molecular, cellular, system and behavioral level by using a wide variety of experimental techniques. These techniques can be grouped based on:

This categorization of experimental methods used by MCIN faculty members might serve as an overview. However, neurophysiological processes of interest in every lab are investigated with multidisciplinary approaches. This is exemplified below by the summary of research in different laboratories along with key publications. 

 

Bamburg: The Bamburg lab uses a number of microscopic imaging methods, most applied to live cells,  to study the development and function of neurons in cell culture and in organotypic slices of rodent hippocampus.

Davis RC, Maloney MT, Minamide LS, Flynn KC, Stonebraker MA, Bamburg JR. Mapping cofilin-actin rods in stressed hippocampal slices and the role of cdc42 in amyloid b-induced rods. J Alzheimers Dis 18, 35-50 (2009). PMID:19542631

Flynn KC, Pak CW, Shaw AE, Bradke F, Bamburg JR. Growth cone-like waves transport actin and promote axonogenesis and neurite branching. Dev Neurobiol 69, 761-779 (2009). PMID:19513994  

 

Cleary: The Cleary lab uses brain electroencephalography (EEG) to examine the brain’s electrophysiological correlates of performance on memory tasks. We also collaborate with other MCIN labs in using functional Magnetic Resonance Imaging (fMRI) to examine how patterns of brain activity relate to performance on cognitive tasks, such as memory tasks. 

Cleary AM. Recognition memory, familiarity, and déjà vu experiences. Current Directions in Psychological Science17, 353-357 (2008).   Curran T, Cleary AM.  Using ERPs to dissociate recollection from familiarity in picture recognition.  Cognitive Brain Research15, 191-205 (2003). PMID: 12429370

 

Davies:  Electroencephalography (EEG) is used to examine brain processing in children, adolescents and young adults.  We are primarily interested in event-related potentials (ERPs), but we also conduct spectral analyses on the EEG data. Our specialty is using a multivariate approach to analyzing and interpreting the ERP data. 

Brett-Green B, Miller LJ, Gavin WJ, Davies PL. Multisensory Integration in Children: A preliminary study.  Brain Res 1242, 283-290 (2008). PMID: 18495092  

Davies PL, Gavin WJ.  Validating the diagnosis of Sensory Processing Disorders using EEG technology.  Am J Occupational Therapy, 61(2), 176-189 (2007). PMID: 17436840 

 

Hentges: Projects in the Hentges lab use electrophysiology and various labeling techniques to better understand how neurons in the hypothalamus are involved in the regulation of food intake and reward.           

Hentges ST, Otero-Corchon V, Pennock RL, King CM, Low MJ. Proopiomelanocortin expression in both GABA and glutamate neurons. J Neurosci  29, 13684-13690 (2009). PMID:19864580

Hentges ST, Low MJ, Williams JT. Differential regulation of synaptic inputs by constitutively released endocannabinoids and exogenous cannabinoids. J Neurosci 25, 9746-9751 (2005).PMID: 16237178

 

Ishii: We are studying the neurophysiology of insulin and insulin-like growth factors (IGFs) with respect to regulation of nerve regeneration, transport across the blood-brain-barrier, and maintenance of adult brain mass.     

Ishii DN, Pu S-F, Glazner GW, Zhuang H-X, Marsh DJ.  Roles of insulin-like growth factors in peripheral nerve regeneration and motor neuron survival. In: Chemical Factors in Neural Growth, Degeneration, and Repair (Bell, C., ed.) Elsevier Science B.V., Amsterdam, pp. 399-421, 1996.  

Pulford BE, Ishii DN. Uptake of circulating insulin-like growth factors (IGFs) into cerebrospinal fluid appears to be independent of the IGF receptors as well as IGF     binding proteins. Endocrinology 142, 213-220 (2001). PMID: 11145584   

 

Malcolm:  We use transcranial magnetic stimulation as a way to explore the neuromotor aspects of the central and peripheral nervous system.  In particular, this reliable technology allows us to discern some mechanisms related to recovery from stroke.            

Plowman-Prine EK, Triggs WJ, Malcolm MP, Rosenbek JC.  Reliability of transcranial magnetic stimulation for mapping swallowing musculature in the human motor cortex. Clinical Neurophysiol 119, 2298–2303 (2008). PMID: 18723391  

Malcolm MP, Triggs WJ, Light KE, Gonzales Rothi LJ, Wu S, Reid K, Nadeau SE. rTMS as adjunct to stroke rehabilitation. Am J Phys Med Rehab 86, 707-715 (2007). PMID: 17709994  

Malcolm MP, Triggs WJ, Light KE, Shechtman O, Khandekar G, Gonzalez Rothi LJ.  (2006). Reliability of motor cortex transcranial magnetic stimulation in four muscle representations.  Clinical Neurophysiol 117,1037-1046 (2006). PMID: 16564206

 

Partin: We perform patch-clamp electrophysiology on cloned rat glutamate (AMPA subtype) receptors expressed transiently in HEK293 cells, using ultrafast solution perfusion to resolve the rapid kinetics of channel gating. We also use confocal microscopy to image cells transfected with receptors and their auxiliary proteins, to look at activity-dependent trafficking of AMPA receptors.

Jin R, Clark S, Weeks AM, Dudman J, Gouaux E, Partin KM.  Molecular mechanism of positive allosteric modulators acting on AMPA receptor. J Neurosci  25, 9027-9036 (2005). PMID: 16192394

Bedoukian MA, Whitesell JD, Peterson EJ, Clay CM, Partin KM. The stargazin C terminus encodes an intrinsic and transferable membrane sorting signal. J Biol Chem  283,1597-1600 (2008). PMID: 17986442

 

Rash:  We have developed combined confocal immunofluorescence microscopy and freeze-fracture replica immunogold labeling (FRIL) electron microscopy to visualize membrane proteins and their macromolecular architecture in neurons of the vertebrate CNS and PNS.

Rash JE, Yasumura T. Direct immunogold labeling of connexins and aquaporin4 in freeze-fracture replicas of liver, brain and spinal cord: factors limiting quantitative analysis.Cell & Tissue Res 296, 307-321 (1999). PMID: 10382274  

Rash JE, Pereda A, Kamasawa N, Furman CS, Yasumura T, Davidson KGV, Dudek FE, Olson C,  Nagy JI. High-resolution proteomic mapping in the vertebrate central nervous system:  Close proximity of connexin35 to NMDA glutamate receptor clusters and co-localization of connexin36 with immunoreactivity for zonula occludens protein-1 (ZO-1). J   Neurocytol 33,131-152 (2004). PMID: 15173637  

Kamasawa N, Sik A, Morita M, Yasumura T, Davidson KGV, Nagy JI, Rash, JE. Connexin47 and connexin32 in gap junctions of oligodendrocyte somata, myelin sheaths,paranodal loops, and Schmidt-Lanterman incisures: Implications for ionic homeostasisand potassium siphoning. Neuroscience 136, 65-86 (2005). PMID: 16203097

 

Reist: The power of Drosophila genetics is applied to examine the molecular mechanisms of synaptic transmission.  Following electrophysiological screening of transgenic animals, specific molecular functions of mutant proteins are determined using fluorescent imaging techniques, electron microscopy, and in depth electrophysiological analyses. We use molecular biology, electron microscopy, electrophysiology, immunohistochemistry, and protein chemistry to analyze the function of individual proteins in regulating synaptic vesicles.

Loewen CA, Lee SM, Shin YK, Reist NE. Synaptotagmin’s C2B polylysine motif facilitates a Ca2+-independent stage of synaptic vesicle priming in vivo.  Molec Biol Cell  17, 5211-526 (2006). PMID: 16987956

Paddock BE, Striegel A, Hui E, Chapman ER, Reist NE.  Ca2+-dependent, phospholipid-binding residues of synaptotagmin are critical for excitation-secretion coupling.  J Neurosci  28, 7458-7466 (2008). PMID: 18650324  

 

Seger: The Seger lab uses functional Magnetic Resonance Imaging (fMRI) to examine patterns of brain activity and interactions between neural regions during cognitive tasks.  We also utilize complementary MRI techniques including high resolution anatomical imaging and diffusion tensor imaging (useful in examining white matter tracts).         

Seger CA, Cincotta CM. Dynamics of frontal, striatal, and hippocampal systems in rule learning.  Cerebral Cortex 16, 1546-1555 (2006). PMID: 16373455   Cincotta CM, Seger CA.

Dissociation between striatal regions while learning to categorize via observation and via feedback.  J Cognitive Neurosci 19, 249-265 (2007). PMID: 17280514

 

Thaut: At the Center for Biomedical Research in Music we study auditory rhythm processing as a model for temporal information processing in the brain using fMRI, PET, EEG, and MEG. Our second emphasis is translational clinical research studying music and rhythm as tools to retrain brain injuries in neurorehabilitation.

Thaut MH, Stephan KM, Wunderlich G, Schicks W, Tellmann L, Herzog H, McIntosh GC, Seitz RJ, Hömberg V. Distinct cortico-cerebellar activations in rhythmic auditory motor synchronization. Cortex 45, 44-53 (2009). PMID: 19673815  

Thaut MH, Gardiner JC, Holmberg D, Horwitz J, Kent L, Andrews G, Donelan B, McIntosh GR. Neurologic music therapy improves executive and psychosocial function in traumatic brain injury rehabilitation. Ann New York Acad Sci 1169,406-416 (2009). PMID: 19673815  

Thaut MH, Leins AK, Rice RR, Argstatter H, Kenyon GP, McIntosh GC, Bolay HV, Fetter       M. Rhythmic auditory stimulation improves gait more than NDT/Bobath training in near ambulatory patients early post stroke: a single blind randomized control trial.  Neurorehabilitation & Neural Repair 21, 455-459 (2007). PMID: 17426347

 

Vigh: We study visual information processing in the retina. Specifically, we investigate fundamental characteristics and modulation of neurotransmitter exocytosis from retinal neurons, opioid signaling and synaptic integration by bipolar cells. Currently, electrophysiological methods (Patch clamp, ERG) and immunohistochemical techniques are used.            

Vigh J, Lasater EM. L-type calcium channels mediate transmitter release in isolated,wide-field retinal amacrine cells. Vis Neurosci21,129-134 (2004).  PMID: 15259564  

Palmer MJ, Hull C, Vigh J, von Gersdorff H. Synaptic cleft acidification and modulation of short-term depression by exocytosed protons in retinal bipolar cells.  J Neurosci  23,11332-11341 (2003). PMID: 14672997

Vigh J, von Gersdorff H. Prolonged reciprocal signaling via NMDA and GABA receptors at a retinal ribbon synapse. J Neurosci 25,11412-11423 (2005). PMID: 16339035