Ion Channels, Synapses and Plasticity

Research in the areas of ion channels and synaptic physiology addresses a broad range of topics that span from studies of single-channels to examining systems-level questions. Ion channels are studied in a variety of tissues ranging from neuronal (Bamburg, Hentges, Partin, Reist, and Vigh) to arterial smooth muscle (Amberg, Earley).  Drs. Rash, Garrity, and Tumkun examine channel functions in a variety of tissues.  Model organisms such as zebrafish and drosophila provide powerful tools to examine ion channels in development (Garrity) and proteins involved in synapse function (Reist).  The role of ion channel function and synaptic plasticity is studied at the systems level to address topics including the regulation of energy balance (Hentges), vision (Vigh), mental illness (Partin), and blood pressure regulation (Amberg and Earley).  Techniques used include electrophysiology (Amberg, Earley, Hentges, Partin, Reist, Tamkun and Vigh), freeze-fracture replica immunogold labeling (FRIL) electron microscopy (Rash), molecular biological approaches (Amberg, Bamburg, Garrity, Hentges, Partin, Reist and Tamkun), and high-power imaging (Amberg, Bamburg, Tamkun, Rash and Reist).  MCIN investigators are adding to our understanding of how ion channels and synapses function in health and disease.  Below, is a list of relevant publications and links to faculty web pages for further information.



Navedo MF, Amberg GC, Votaw VS, Santana LF.  Constitutively active L-type Ca2+ channels. Proc Natl Acad Sci USA 102, 11112-11117 (2005).

Amberg GC, Navedo MF, Nieves-Cintrόn M, Molkentin JD, Santana LF. Calcium sparklets regulate local and global calcium in murine arterial smooth muscle. J Physiol 579,187-201 (2007).



Lee CW, Han J, Bamburg JR, Han L, Lynn R, Zheng JQ.  Spatial control of acetylcholine receptor clustering on postsynaptic membrane by ADF/cofilin-directed vesicular trafficking. Nature Neurosci. 12, 848-856 (2009).PMID: 19483689

Pak CW, Bamburg JR. Exciting dendritic spines. The Open Neurosci J 3, 52-53 (2009)



Earley S, Pauyo T, Drapp R, Tavares M, Liedtke W, Brayden JE. TRPV4-dependent dilation of peripheral resistance arteries influences arterial pressure. Am J Physiol (Heart Circ. Physiol)297, H1096-H1102 (2009).

Earley S, Gonzales AL, Crnich R. Cerebral artery dilation mediated by endothelial TRPA1 and Ca2+-activated K+ channels. Circ Res 104, 987-994 (2009).



Ebert AM, McAnelly CA, Handschy A, Mueller RL, Horne WA, Garrity DM. Genomic organization, expression and phylogenetic analysis of Ca2+ channel b4 (CACNB4) genes in thirteen vertebratespecies. Physiological Genomics 35,133-144 (2008).

Ebert AM, McAnelly CA, Srinivasan A, Mueller RL, Garrity DB, Garrity DM. The calcium channel β2 (CACNB2) subunit repertoire in teleosts, BMC Molecular Biology 9, 38 (2008).



Hentges ST, Otero-Corchon V, Pennock RL, King CM, Low MJ. Proopiomelanocortin expression in both GABA and glutamate neurons. J Neurosci  29, 13684-13690 (2009).

Hentges, ST, Low MJ, Williams JT. Differential regulation of synaptic inputs by constitutively released endocannabinoids and exogenous cannabinoids. J Neurosci 25, 9746-9751 (2005)



Jin R, Clark S, Weeks AM, Dudman J, Gouaux E, Partin KM.  Molecular mechanism of positive allosteric modulators acting on AMPA receptor. J Neurosci 25, 9027-9036 (2005).

Bedoukian MA, Whitesell JD, Peterson EJ, Clay CM, Partin KM. The stargazin C terminus encodes an intrinsic and transferable membrane sorting signal. J Biol Chem283:1597-1600 (2008).



Rash JE, Davidson KGV, Yasumura T, Furman CS. Freeze-fracture and immunogold analysis of aquaporin-4 (AQP4) square arrays, with models of AQP4 lattice assembly.Neuroscience 129, 915-934 (2004).

Rash JE.  Molecular disruptions of the panglial syncytium block potassium siphoning and axonal saltatory conduction: pertinence to neuromyelitis optica and other demyelinatingdiseases of the central nervous system.  Neuroscience (In Press; epub before print) (2009)



Loewen CA, Lee SM, Shin YK, Reist NE.  Synaptotagmin’s C2B polylysine motif facilitates a Ca2+-independent stage of synaptic vesicle priming in vivo.  Mol Biol Cell  17, 5211-5226 (2006).

Paddock BE, Striegel A, Hui E, Chapman ER, Reist NE.  Ca2+-dependent, phospholipid-binding residues of synaptotagmin are critical for excitation-secretion coupling.  JNeurosci 28, 7458-7466 (2008).



O’Connell  KMS, Whitesell JD, Tamkun MM. Localization and mobility of the delayed rectifer K+channel Kv2.1 in adult cardiomyocytes. Am J Physiol Heart Circul Physiol 294, H229-H237 (2008).

Sarmiere PD, Weigle CM, Tamkun MM. The Kv2.1 K+ channel targets to the axon initial segment   of hippocampal and cortical neurons in culture and in situ. BMC Neuroscience9,112 (2008).



Vigh J, von Gersdorff H. Prolonged reciprocal signaling via NMDA and GABA receptors at a retinal ribbon synapse. J Neurosci 25,11412-11423 (2005).

Li G-L, Vigh J, von Gersdorff H. Short-term depression at the reciprocal synapses between a retinal bipolar cell terminal and amacrine cells. J Neurosci 27, 7377-7385 (2007).